УДК 620.179.14

КОНТРОЛЬ ТЕМПЕРАТУРЫ ОТПУСКА СТАЛИ 50ХГФА ИМПУЛЬСНЫМ МАГНИТНЫМ АНАЛИЗАТОРОМ ИМА-6 Tempering temperature testing of 50ХГФА steel by pulsed magnetic analyzer ИМА-6

Матюк В.Ф., Бурак В.А. *Matyuk V.F., Burak V.A.*

Проанализированы перспективы и возможности импульсного магнитного метода контроля качества термообработки рессорно-пружинных сталей на примере стали 50ХГФА. Исследовано влияние температуры термообработки рессорно-пружинной стали 50ХГФА на ее магнитные свойства при импульсном режиме перемагничивания. Установлены режимы намагничивания и информативные параметры, по которым возможен контроль качества отпуска стали 50ХГФА.

The prospects and possibilities of pulsed magnetic method of heat treatment quality testing for spring steel by the example of $50X\Gamma\Phi A$ steel are discussed. The effect of $50X\Gamma\Phi A$ spring steel heat treatment temperature on its magnetic properties under pulsed magnetization is analyzed. Modes of magnetization and informative parameters for 50HGFA steel tempering quality testing are determined.

Введение

Для изготовления рессор, амортизаторов, силовых пружин различного назначения и других упругих элементов используются рессорно-пружинные стали, которые должны иметь высокие пределы упругости, выносливости и релаксационную стойкость. Этим требованиям удовлетворяют стали с повышенным содержанием углерода (0,5–0,7 %), подвергнутые закалке и последующему отпуску при 420– 520 °C [1].

Хромомарганцеванадиевая высококачественная рессорнопружинная сталь 50ХГФА используется для изготовления ответственных пружин и рессор, подвергающихся в процессе работы многократным переменным нагрузкам и требующих длительного цикла работы.

Повышенное содержание марганца в среднеуглеродистой стали 50ХГФА, легированной хромом, приводит к увеличению ее прочност-

ных свойств с небольшим изменением пластичности и повышает прокаливаемость. Присутствие ванадия в этой стали приводит к ее мелкозернистому строению и дополнительно повышает прокаливаемость. При отпуске в интервале 400–500 °С по узлам сетки дислокаций выделяются карбиды ванадия, растворившиеся при нагреве под закалку, что замедляет разупрочнение при отпуске до заметной коагуляции этих карбидов, которая происходит при температурах отпуска выше 500 °С.

Ванадий также положительно влияет на связывание азота, а малая чувствительность к росту аустенитного зерна и равномерное распределение карбидов в структуре стали 50ХГФА после отпуска обеспечивают повышенную ударную вязкость [1].

Выборочный контроль проведенной термообработки изделий из рессорно-пружинных сталей осуществляется по твердости. Однако при измерении твердости стандартными методами с использованием инденторов повреждается поверхность изделия, что зачастую приводит к невозможности его дальнейшего использования, информация снимается только с поверхностного слоя, что не дает представления о структурном состоянии всего изделия, а контроль проводится выборочно, что не гарантирует качества всех изделий из партии. Поэтому существует настоятельная необходимость неразрушающего контроля твердости изделий из стали 50ХГФА.

Среди методов неразрушающего контроля структурного состояния ферромагнитных материалов и изделий широкое распространение получили магнитные методы [2–6]. Они основаны на наличии устойчивых корреляционных связей между контролируемой механической характеристикой и тем или иным магнитным параметром.

В [7] показано, что ни одна из магнитных характеристик, измеренных в квазистатическом режиме намагничивания–перемагничивания, не имеет однозначной связи с твердостью после закалки и высокотемпературного отпуска стали 50ХГФА. Не решается вопрос контроля и при намагничивании изделий из этой стали серией импульсов постоянной амплитуды и измерении градиента нормальной составляющей напряженности поля остаточной намагниченности ∇H_{rn} .

Для получения однозначной связи между механическими свойствами и магнитным параметром там же было предложено осуществлять импульсное намагничивание – перемагничивание изделия накладным соленоидом, а в качестве магнитного параметра контроля использовать релаксационную коэрцитивную силу в импульсном режиме перемагничивания или градиент напряженности поля остаточной намагниченности после перемагничивания предварительного намагничивания до насыщения изделия импульсом заданной амплитуды. Однако методика измерения релаксационной коэрцитивной силы в импульсном режиме намагничивания довольно сложна для практической реализации, а контроль только по одному параметру часто не обеспечивает приемлемой чувствительности в широком интервале изменения температуры отпуска.

Успешно решает задачу контроля твердости сталей с неоднозначной связью твердости со стандартными магнитными характеристиками многопараметровый импульсный магнитный метод контроля [8], но из-за сравнительно низкой производительности измерений (цикл намагничивание – измерение длится примерно 30 с) его целесообразно применять только для контроля ответственных деталей.

Целью данной работы является повышение производительности и достоверности контроля импульсным магнитным методом качества отпуска после закалки рессорно-пружинной стали 50ХГФА.

МЕТОДИКА ИССЛЕДОВАНИЙ

Методика основана на локальном двухполярном импульсном намагничивании изделия, при котором на него воздействуют импульсным аксиально симметричным магнитным полем одного направления, а затем импульсным магнитным полем противоположного направления, и измеряют после окончания воздействия последнего градиент нормальной составляющей напряженности поля остаточной намагниченности в центре намагниченного участка [6].

В [9] показано, что для конструкционных среднеуглеродистых сталей при использовании импульсного магнитного метода можно добиться однозначной и практически линейной зависимости контролируемого магнитного параметра и температурой отпуска, если амплитуду размагничивающего импульса выбрать из условия полного размагничивания самого мягкого и самого твердого изделий из числа контролируемых.

На основе этих исследований разработана новая методика контроля качества отпуска изделий из среднеуглеродистых сталей [10]. Сущность ее заключается в том, что контролируемое изделие намагничивают импульсом магнитного поля в форме апериодического разряда конденсатора длительностью не менее 3,5 мс и амплитудой, превышающей коэрцитивную силу изделия. Затем изделие частично размагничивают импульсом магнитного поля той же формы и длительности, но противоположного направления. Амплитуда размагничивающего импульса выбирается заранее из условия полного размагничивания намагниченного участка эталонного изделия из числа контролируемых, подвергнутого отпуску при максимальной температуре. После этого измеряют градиент ∇H_{rn} и определяют искомую температуру по заранее установленной корреляционной температурной зависимости измеренной величины.

В ряде случаев чувствительность контроля по данной методике [11] можно существенно повысить. Для этого в качестве информативного параметра следует использовать не градиент нормальной составляющей напряженности поля остаточной намагниченности, измеренный после окончания размагничивающего импульса, а сумму градиентов, измеренных после намагничивающего и после размагничивающего импульсов, то есть вести контроль температуры отпуска по двум параметрам.

Хорошие результаты получаются и при контроле по сумме градиентов, измеренных после локального размагничивания намагниченного изделия импульсами разной амплитуды, первая из которых привязана к закаленному изделию (изделию с максимальной коэрцитивной силой), а вторая – к изделию, отпущенному при максимальной для испытуемого типа изделий температуре (изделию с минимальной коэрцитивной силой) [12].

Для реализации данной методики использовался импульсный магнитный анализатор ИМА-6 [13], который позволяет осуществлять:

– локальное импульсное намагничивание контролируемого изделия и измерение градиента ∇H_{rn} нормальной составляющей напряженности поля остаточной намагниченности после его окончания;

– локальное импульсное намагничивание, а затем частичное размагничивание контролируемого изделия импульсным магнитным полем с заранее выбранной амплитудой и измерение градиента ∇H_{rn}^{p} нормальной составляющей напряженности поля остаточной намагниченности частично размагниченного изделия;

– локальное импульсное намагничивание, а затем частичное размагничивание контролируемого изделия импульсным магнитным полем с заранее выбранной амплитудой и измерение градиента нормальной составляющей напряженности поля остаточной намагниченности как после окончания намагничивания (∇H_{rn}), так и после окончания размагничивания (∇H_{rn}^{p}) (измеренные величины используют для построения двухпараметровой корреляционной модели);

– локальное импульсное намагничивание, а затем частичное размагничивание контролируемого изделия импульсным магнитным полем с заранее выбранной амплитудой, измерение градиента нормальной составляющей напряженности поля остаточной намагниченности как после окончания намагничивания (∇H_{rn}), так и после окончания размагничивания (∇H_{rn}^{p}) и вывод на индикатор суммы измеренных градиентов ($\nabla H_{rn} + \nabla H_{rn}^{p}$), по величине которой и ведется контроль.

Исследуемые образцы из рессорно-пружинной стали 50ХГФА представляли собой пластины 140×20×2,2 мм³, подвергнутые закалке от температур 790, 820, 850, 880 и 910 °C и последующему отпуску при 200, 300, 350, 410, 440, 470, 500, 530, 560 и 600 °C. При контроле преобразователь прибора ИМА-6 размещался таким образом, чтобы ось феррозонда находилась на пересечении диагоналей пластин. Намагничивание контролируемых образцов осуществлялось одним импульсом амплитудой 250 кА/м, амплитуды размагничивающих импульсов выбиралась для каждой температуры закалки из условия полного размагничивания намагниченного участка изделия из числа контролируемых, подвергнутого отпуску при максимальной или минимальной температуре.

РЕЗУЛЬТАТЫ ИССЛЕДОВАНИЙ

На рис. 1, а представлены зависимости градиента ∇H_{rn} нормальной составляющей напряженности поля остаточной намагниченности исследуемых образцов от температуры отпуска $T_{\rm отп}$ при разных температурах закалки $T_{\rm зак}$ после воздействия намагничивающего импульса с амплитудой H_m , доводящей локальный участок намагничиваемого образца до состояния, близкого к состоянию технического насыщения.

Из них видно, что при $T_{\text{отп}} > 300$ °С градиент ∇H_{rn} изменяется незначительно, причем это изменение неоднозначно. Наибольшая чувствительность градиента ∇H_{rn} к изменению $T_{\text{отп}}$ наблюдается в диапазоне температур 200–300 °С (450 А/(м²·°С)), то есть по данному магнитному параметру можно отличить только практически не отпущенный материал от отпущенного при температуре более 300 °С.

Рис. 1. Зависимость градиента нормальной составляющей напряженности поля остаточной намагниченности образцов стали 50ХГФА от температуры отпуска

Данная закономерность связана с тем, что градиент ∇H_m пропорционален коэрцитивной силе локально намагниченного участка [14], а в [15] показано, что существенное уменьшение коэрцитивной силы как по индукции *H*_{cB} (измеренной в закрытой магнитной цепи при максимальной напряженности намагничивающего поля $H_m =$ 10000 А/м), так и по намагниченности Н_{см} (измерение в открытой магнитной цепи при намагничивающем поле *H_m* = 20000 A/м) имеет место лишь в интервале "без отпуска – 300 °С". Затем до температуры 450 °С следует небольшое уменьшение коэрцитивной силы и ее последующий слабый рост в интервале 450–500 °С. Изменения коэрцитивной силы в интервале 300-600 °С настолько невелики, что можно говорить о ее неизменности.

Такие изменения коэрцитивной силы в зависимости от температуры отпуска обусловлены тем, что при низкотемпературном (до 200 °С) отпуске преобладают процессы релаксации внутренних напряжений в стали, распад мартенсита и выделение углерода из твердого раствора [16]. Это приводит к уменьшению твердости, прочности и небольшим изменениям магнитных свойств. В интервале температур отпуска 200-300 °С происходит распад остаточного аустенита, завершение распада мартенсита и выделения є-карбида, развиваются различные процессы приближения к равновесному состоянию: перераспределение углерода в твердом растворе, перемещение атомов углерода к дислокациям и перераспределение их по междуузлиям кристаллической решетки [1]. Это приводит к дальнейшему снижению твердости и прочности стали, существенному увеличению ее намагниченности и индукции, снижению коэрцитивной силы, остаточной намагниченности, увеличению дифференциальной и начальной магнитных проницаемостей.

При температурах отпуска выше 300 °С происходит интенсивная коагуляция цементита и рост размера частиц цементита, возрастает подвижность легирующих элементов, образующих с железом твердые растворы замещения, возникают специальные карбиды, уменьшается количество мелких и увеличивается количество крупных карбидных частиц, образуются мелкие зерна феррита, на порядок снижается плотность дислокаций. При этом твердость и прочность с увеличением температуры отпуска постоянно снижаются, а на магнитные свойства указанные структурные изменения влияют противоречиво. Так, коагуляция карбидов приводит к росту локальных напряжений вокруг включений, затрудняя процессы смещения доменных границ, и соответственно, к росту коэрцитивной силы, а уменьшение искажений решетки феррита приводит к ее уменьшению [1]. В результате

суммарная зависимость коэрцитивной силы и других магнитных свойств оказывается неоднозначной.

В случае частичного размагничивания локально намагниченного образца ($H_m^p \neq 0$) устанавливается однозначная связь между градиентом ∇H_{rn}^p нормальной составляющей напряженности поля остаточной намагниченности частично размагниченного образца и температурой отпуска во всем интервале изменения температур отпуска. При этом чувствительность градиента ∇H_{rn}^p к изменению температуры отпуска зависит от амплитуды H_m^p размагничивающего импульса.

В случае, когда амплитуда размагничивающего импульса H_m^{p1} выбрана такой, что при максимальной для данного типа изделий температуре отпуска (для исследуемых образцов – 600 °C) величина измеряемого градиента ∇H_{rn}^{p1} равна нулю (рис. 1, б), в диапазоне температур от 200 до 600 °C наблюдается практически линейная взаимосвязь между температурой отпуска и измеряемым параметром. Чувствительность градиента ∇H_{rn}^{p1} к изменению $T_{\rm отп}$ в этом диапазоне составляет 140 А/(м^{2.°}C)

Если величина H_m^p выбрана из условия, что при минимальной для данного типа изделий температуре отпуска величина измеряемого градиента равна нулю (на рис. 1, в), то диапазон линейности может даже расшириться в сторону меньших температур, но при этом чувствительность к изменению температуры отпуска несколько уменьшается и составляет 82 А/(м².°C).

Измерение суммы градиентов (рис. 2, а) после воздействия на испытуемое изделие намагничивающего и размагничивающего импульсов с привязкой амплитуды последнего к образцам, отпущенным при максимальной температуре, позволяет увеличить в 1,5–2 раза чувствительность контроля к температуре отпуска во всем интервале ее изменения при практически линейной связи между ними в области низкого и среднего отпуска [11]. Средняя чувствительность в диапазоне изменения температуры от 200 до 600 °C составляет 280 А/(м^{2, °}C). Аналогичные результаты получаются и при контроле по сумме градиентов, измеренных после локального намагничивания, и последующего размагничивания образцов с привязкой амплитуды последнего к закаленным образцам, отпущенным при максимальной температуре (рис. 2, б). При этом средняя чувствительность в диапазоне изменения температуры отпуска от 200 до 600 °C составляет 225 А/(м^{2, °}C).

стали 50ХГФА от температуры отпуска

НЕРАЗРУШАЮЩИЙ КОНТРОЛЬ И ДИАГНОСТИКА № 2, 2013

НАУЧНЫЕ ПУБЛИКАЦИИ _____

Хорошие результаты получаются и при контроле по сумме градиентов, измеренных после локального размагничивания намагниченного изделия импульсами разной амплитуды, первая из которых привязана к закаленному изделию (изделию с максимальной коэрцитивной силой), а вторая – к изделию, отпущенному при максимальной для испытуемого типа изделий температуре (изделию с минимальной коэрцитивной силой) [12]. При этом средняя чувствительность в диапазоне изменения температуры отпуска составляет 220 А/(м^{2.°}С) (рис 2, в).

Следует отметить, что температура закалки испытуемых образцов в пределах от 790 до 910 °С оказывает незначительное влияние на результаты измерений.

Повышение чувствительности измеряемого магнитного параметра к изменению температуры отпуска за счет выбора амплитуды размагничивающего импульса определяется разным ходом зависимости градиентов ∇H_{rn} и ∇H_{rn}^{p} от изменения температуры при низкотемпературном, среднетемпературном и высокотемпературном отпуске после намагничивающего и после размагничивающих импульсов. Так, градиент ∇H_{rn} , измеренный после намагничивающего импульса, более чувствителен к изменению температуры при низкотемпературном и среднетемпературном отпуске и очень слабо (причем неоднозначно) зависит от температуры при высокотемпературном отпуске. В то же время градиент, измеренный после воздействия на изделие размагничивающего импульса с привязкой его амплитуды к размагниченному состоянию закаленного изделия, более чувствителен к изменению температуры отпуска от 200 до 600 °С, а после размагничивающего импульса с привязкой его амплитуды к магнитному состоянию отпущенного при максимальной для данного типа изделий температуре от 200 до 300 °С и от 500 до 600 °С.

Результаты корреляционного анализа данных, полученных с помощью прибора ИМА-6 на пластинах из стали 50ХГФА, представлены в таблице. Корреляционная связь устанавливалась для градиента нормальной составляющей напряженности поля остаточной намагниченности после намагничивания, после последующего частичного размагничивания и для их суммы.

При измерении только градиента ∇H_{rn} после намагничивания коэффициенты корреляции *R* лежат в пределах от 0,714 до 0,881. При измерении градиентов ∇H_{rn}^{p1} и ∇H_{rn}^{p2} после намагничивания и последующего размагничивания импульсом с заранее выбранной амплитудой коэффициенты корреляции R увеличиваются от 0,886 до 0,978. Хорошие коэффициенты корреляции R (в среднем не менее 0,950) наблюдаются и при использовании в качестве контролируемого параметра суммы градиентов $\nabla H_{rn}^{p1} + \nabla H_{rn}^{p2}$ после намагничивания и последующего размагничивания импульсами разной заранее выбранной амплитуды.

<i>Т</i> _{зак} , °С		790	820	850	880	910
$H_m^{ m p1}{\cdot}10^{-3}$, А/м,		35	35	35	35	35
<i>H</i> ^{p2} _{<i>m</i>} ∙10 ⁻³ , А/м		20	20	20	20	20
R	∇H_{rn}	0,817	0,881	0,852	0,871	0,714
	$ abla H_{rn}^{\mathrm{p1}}$ при H_{m}^{p1}	0,978	0,972	0,968	0,966	0,965
	$ abla H_{rn}^{ m p2}$ при $H_m^{ m p2}$	0,939	0,950	0,929	0,939	0,886
	$ abla H_{rn}$ + $ abla H_{rm}^{p1}$ при H_m^{p1}	0,906	0,932	0,905	0,921	0,836
	$ abla H_{rn} + abla H_{rn}^{p2}$ при H_m^{p2}	0,886	0,917	0,893	0,905	0,805
	$\nabla H_{rn}^{\mathrm{p1}} + \nabla H_{rn}^{\mathrm{p2}}$	0,960	0,963	0,948	0,958	0,925

Таблица. Величины коэффициента корреляции показаний прибора ИМА-6 с температурой термообработки пластин из стали 50ХГФА

Заключение

1. На примере стали 50ХГФА показано, что намагничивание и частичное размагничивание контролируемого изделия импульсами магнитного поля с привязкой амплитуды размагничивающих импульсов к размагниченному состоянию закаленных и отпущенных при максимально или минимально возможной температуре и измерение суммы градиентов, измеренных после окончания намагничивающего и размагничивающего импульсов или после окончания двух разных по амплитуде размагничивающих импульсов, устраняет неоднозначность и повышает чувствительность контроля структурного состояния изделий из пружинно-рессорных сталей, подвергнутых отпуску после закалки.

2. Функциональные возможности импульсного магнитного анализатора ИМА-6 обеспечивают контроль низкотемпературного, средне- и высокотемпературного отпуска предварительно закаленных изделий из рессорно-пружинных марок сталей.

Литература

- 1. Рахштадт А.Г. Пружинные стали и сплавы. М.: Металлургия, 1971. 496 с.
- 2. Мельгуй М.А. Магнитный контроль механических свойств сталей. Минск: Наука и техника, 1980. 184 с.
- 3. Михеев М.Н., Горкунов Э.С. Магнитные методы структурного анализа и неразрушающего контроля. М.: Наука, 1993. 252 с.
- 4. Щербинин В.Е., Горкунов Э.С. Магнитный контроль качества материалов. Екатеринбург: УрО РАН, ИФМ, 1996. – 265 с.
- 5. Бида Г.В., Горкунов Э.С., Шевнин В.М. Магнитный контроль механических свойств проката. Екатеринбург: УрО РАН, 2002. 252 с.
- 6. Матюк В.Ф. Приборы магнитной структуроскопии на основе локального импульсного двухполярного намагничивания. – Неразрушающий контроль и диагностика, 2012, № 4, с. 20–45.
- 7. Матюк В.Ф., Мельгуй М.А., Осипов А.А., Кратиров В.Б., Любарец А.Л., Шептуро С.В. О возможности контроля механических свойств стали 50ХГФА импульсным магнитным методом. – Дефектоскопия, 2003, № 9, с. 28-36.
- 8. Матюк В.Ф. Приборы магнитной структуроскопии на основе локального циклического импульсного перемагничивания. – Неразрушающий контроль и диагностика, 2013, № 1, с. 3–27.
- 9. Матюк В.Ф., Бурак В.А. Контроль качества отпуска закаленных изделий из конструкционных среднеуглеродистых сталей импульсным магнитным методом. – Заводская лаборатория. Диагностика материалов, 2011, т. 77, № 5, с. 31–36.
- Матюк В.Ф., Кратиров В.Б., Бурак В.А. Способ импульсного магнитного контроля температуры отпуска изделия из улучшаемой ферромагнитной стали после его окончания. – Патент РБ № 11395. – Афіцыйны бюлетэнь, 2008, № 6, с. 137–138.
- 11. Матюк В.Ф., Бурак В.А., Делендик М.Н. Способ импульсного магнитного контроля температуры отпуска изделия из среднеуглеродистой стали – Патент РБ № 12447. – Афіцыйны бюлетэнь, 2009, № 5, с. 123.

- 12. Матюк В.Ф., Бурак В.А Способ импульсного магнитного контроля температуры отпуска изделия из улучшаемой ферромагнитной стали. Патент РБ № 12446. Афіцыйны бюлетэнь, 2009, № 5, с. 122–123.
- 13. Матюк В.Ф., Бурак В.А., Осипов А.А., Пинчуков Д.А. Импульсный магнитный анализатор ИМА-6. Дефектоскопия, 2009, № 7, с. 62–74.
- 14. Матюк В.Ф. Приборы магнитной структуроскопии на основе локального однополярного импульсного намагничивания. – Неразрушающий контроль и диагностика, 2012, № 2, с. 29–64.
- 15. Матюк В.Ф., Мельгуй М.А., Осипов А.А., Кратиров В.Б., Любарец А.Л.. Шептуро С.В. О возможности контроля механических свойств стали 50ХГФА импульсным магнитным методом. Дефектоскопия, 2003, № 9, с. 28-36.
- Металловедение и термическая обработка стали. Справочник. Изд. 3-е, в 3-х т.
 Т. II. Основы термической обработки. Под ред. Бернштейна М.Л., Рахштадта Г.М. М.: Металлургия, 1983. 368 с.

Статья поступила в редакцию 06.06.13